校庆专题 保定校区 English

【伟德国际1946官网之三十三】100 Years of Tomography: We are all super-human now

来源:党委研究生工作部、控制与计算机工程学院、新能源电力系统国家重点实验室、科学技术研究院、校庆工作办公室发布时间:2018-10-15

【讲座题目】100 Years of Tomography: We are all super-human now

【讲座时间】2018年10月16日(星期二)14:00

【讲座地点】北京校部主楼A区322学术报告厅

【主 讲 人】Hugh McCann(爱丁堡大学教授,英国皇家工程院院士,爱丁堡皇家学会会士)

【主讲人概况】

Hugh McCann is Professor of Tomographic Imaging at The University of Edinburgh (2013-date), and was Head of the School of Engineering (2013-2018). Now an Electronic Engineer, he graduated in Physics (1976) and PhD in High-Energy Particle Physics (1980) at the University of Glasgow. He carried out 6 years of post-doctoral research at DESY (Hamburg) and CERN (Geneva). In 10 years at the Royal Dutch/Shell Group, he was founding Group Leader of Shell’s specialist  Engine Measurements group, and won the  Colwell Merit Award of the Society of Automotive Engineers (1995).

In both Manchester and Edinburgh, Professor McCann has established world-leading research groups in Agile Tomography, with applications mainly in engineering processes. He has pioneered the technique of Chemical Species Tomography, using opto-electronic systems to provide  in situ specific chemical imaging capability in various combustion systems, with funding from EPSRC in the UK and from the European Union. This work has been carried out in partnership with several companies, such as Shell, Innospec, Rolls-Royce and Revolve Technologies, and was awarded the  Maurice Beck Prize of the World Congress in Industrial Process Tomography (2007).  Professor McCann has developed electrical impedance tomography for medical applications, funded by Wellcome Trust and EPSRC. He McCann is author/co-author of more than 110 articles in peer-reviewed journals.  Elected a Fellow of the Royal Academy of Engineering in 2009 and the Royal Society of Edinburgh in 2015, he was appointed Visiting Professor (2014-date) in the School of Instrumentation and Opto-electronics, Beihang University, Beijing.

【内容概况】

Everyone is aware of one area where the technique of tomography is heavily used: medical imaging, where several “modalities” are used routinely, including X-Ray CT, MRI and PET. They all enable us to “see” inside the human body without cutting it open. The word  tomography is derived from the Greek  tomoz , meaning ‘to slice’, but the technique of tomography enables us to see a cross-section through a subject without physically disrupting it. Just 100 years ago, the theoretical concept of tomography was set out in mathematical terms by Johann Radon, independently, a first practical system was described by Carlo Baese, using X-rays.

The three modalities above all use radically different measurement methods, to image very different medical conditions, illustrating the great versatility of tomography as an imaging technique. Within medicine, tomography has now been implemented in a variety of modalities, and used for purposes ranging from the study of brain function to the control of lung ventilation in intensive care. In engineering research and development, an even wider range of tomographic modalities have been applied to a huge range of processes, from multi-phase flow monitoring in oil and gas pipelines, to the chemically specific imaging of fuel flow inside vehicle engines at thousands of frames per second.

In 1938, the first Superman had X-ray vision, although doubts have been cast upon the plausibility of this claim. Well, we all now have this type of ‘vision’ in medicine and in various manufacturing processes. In fact, we can now ‘look inside’ many subjects with much more discriminating capacity than would be possible by using X-rays alone. This lecture will describe how we have all now attained attributes even better than Superman’s, and it will also lay out the further promise that the technique holds for even greater capabilities.  


返回
XML 地图 | Sitemap 地图